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Abstract

Recently, object detection, recognition and retrieval
has developed as one of the most important sub-fields of
robotics and computer vision. While a lot of work has
been focused on visible object recognition, detection and re-
trieval of occluded objects and objects in structured indoor
environment, such as rooms, containers and shelves, is an
ongoing problem. In this work, we apply voxel space carv-
ing to synthetically generated 3D objects on shelves to im-
prove object recognition in such indoor environments. The
resulting space carving can be used as a middle step in fu-
ture neural network based 3D object detection techniques.

1. Introduction

In the modern era where robotics has become ubiqui-
tous, one of the most common challenges that robots face
is object manipulation and retrieval. For instance, Amazon
has been using mobile robotic fulfillment systems since
2012 and is moving towards fully automated shipping
warehouses. Their model relies on using mobile robots
that follow bar-code stickers on the floor to retrieve stacks
of objects and bring it to a human operator to pick the
items. For a fully automated system, the robot would need
to recognize the objects and be able to retrieve the correct
target, subject to performance goals. In less structured
environments, such a task may be further complicated by
clutter that partially or completely occludes the target.
Furthermore, the objects may not always be arranged stacks
or in a table-top configuration, but may instead be located
on a shelf or in a box.

In this project, we will explore improving mechanical
search on dense, cluttered objects in a shelf, by using
computer vision techniques (specifically space carving) to
enhance the mid-level representations fed to the core re-
inforcement learning algorithms that issue actions to the

robot.

2. Background/Related Work

Object detection, recognition and retrieval is a rapidly
growing sub-field of robotics and computer vision. Re-
cently, researches have made progress in detecting and re-
trieving objects from clutter/partially occluded objects. Pre-
vious work [6] included using reinforcement learning to
teach a robot a sequence of movements to retrieve a partially
occluded object that is detected with the help of a mid-level
representation consisting of a position image masked by the
segmentation of the target object. Another relevant paper
[5] explores detection and recognition of occluded objects
in organized indoor environments such as shelves. The au-
thors employ a neural net architecture that consists of scene
nodes containing the geometrical information about rooms,
containers and objects as well as a natural language descrip-
tion of the scene. Some other previous works used either
only semantics [1], [17], [12], [10] or geometry [2], [18] to
generate scene graphs.

3. Approach

Our approach to enhance mechanical search is to per-
form space carving on the objects on the shelf so that the
robot can better identify the objects. Our method is as
follows: 1) Place objects onto a container shelf, 2) obtain
multiple camera views of the scene, 3) retrieve relevant in-
formation for space carving (camera intrinsics, perspective
matrix, view matrix for each new camera placement, each
object’s pose translation and pose rotation, etc.), and 4) per-
form space carving on the objects from various viewpoints.

3.1. Data

The raw data is a set of 3D containers and a set of 3D ob-
jects, which were provided by Andrey from [5]. Each con-
tainer contains URDF, OBJ, MTL, and YAML files that de-
scribe the container’s properties (origin, mass, mesh, shelf
height, size, texture, etc.) that are loaded into iGibson.
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Likewise the objects’ mesh, texture, and other properties
are also defined by URDF, YAML, OBJ, and MTL files.

3.2. Methods

We adapted the hierarchical mechanical search (HMS)
code from [5] to construct the shelf scene using the ”gener-
ate shelf obj placements.py” script, by having a robot from
the iGibson and PyBullet environment attempt to place
objects onto a shelf container. Given a container and a set
of objects, the script will try various orientations of the
objects in an attempt to place them onto the shelf (Fig. 4).

For our experiments, we placed five objects (action fig-
urines) onto the container (a normal shelf). One example
of how we placed some Nintendo action figures like Mario
onto a normal shelf is visualized in the figure below (Fig. 5)
with some of the objects placed onto the shelf. Initially, we
had two camera views for each object: the camera placed at
the mean location of all objects and the camera placed at the
location of each specific object. We would retrieve the cam-
era intrinsics, RBG image, depth map, segmentation mask
for each object, and camera location. As we were unable to
really carve with that information, we additionally retrieved
the projection (perspective) matrix, view matrix, light per-
spective, and light view matrices. Also, we moved the cam-
era to various other positions: translating along each x,y,z-
axis by 0.2 and -0.2 (for 6 additional camera placements
Fig. 1), and a randomly placed camera position.

It is important at this point to briefly illustrate how the
rendering engine, iGibson [14], returns various matrices
needed for projection of 3D points back into 2D image
space. The iGibson renderer is a light weight renderer that
wraps around openGL renderer, and, as such returns matri-
ces in the same format as openGL’s. Essentially, iGibson-
openGL returns a 4×4 matrix called the View matrix which
is the object space matrix. It also returns a 4 × 4 rota-
tional and a 4× 4 translation matrix, which we use to com-
pute the ModelView matrix ’M’. ModelView Matrix ’M’ is
the transformation of a 3D point in object space to camera
space. iGibson-openGL also supplies the 3D camera space
to 2D image space ’projection’ matrix ’P’. We then com-
pute the end-to-end 3D→2D projection matrix by dotting
’P’ and ’M’. The pipeline is illustrated below (Fig. 2):
The computation of the end-to-end projection pipeline was
tricky as the matrix computations are based on the frustum
camera model, a model whose impact we are unsure of on
the overall carving technique. The end-to-end projection
model for a frustum based camera according to openGL’s

(a) x-axis translate add 0.2 (b) x-axis translate subtract 0.2

(c) y-axis translate add 0.2 (d) y-axis translate subtract 0.2

(e) z-axis translate add 0.2 (f) z-axis translate subtract 0.2

Figure 1: Camera placements from translations with respect
to mean object location

literature is as follows:
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where f and n are far plane and near plane distances,
respectively, from the camera center along the optical axis
as shown in figure 3 below. OpenGL projects a 3D point to
the near plane. Further, depending on whether the viewing
volume is symmetric or not, the frustum projection model
changes. A challenge in iGibson was to be able to get the
nature of the frustum viewing volume and its corresponding
parameters. So, as an alternative, we computed the projec-
tion model as described in the pipeline in Fig. 2 , rather
than directly through imputation of specific values for the
6 degrees of freedom required for the frustum perspective
projection matrix. Further, this projection matrix is of
shape 4 × 4, rather than the traditional matrix with a shape
3 × 4, and we would have to ensure that the dot product
of the frustum matrix and the ModelView matrices were
compatible. Given the unclear notations used in HMS code
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Figure 2: Computation of 3D to 2D perspective projection
matrix

Figure 3: Side view of the frustum camera model in
openGL. Image courtesy: http://www.songho.ca/
opengl/gl_projectionmatrix.html

as well as in iGibson renderer, our computation of such dot
products needs more validation checks.

Given that our projection matrix computation methodol-
ogy required collection of several intermediate matrices and

Figure 4: Example of depth map and segmentation mask for
one object of the shelf scene from HMS output

careful assessment of shapes, our final tweaks to HMS code
was to recover verifiable matrices such as each object’s pose
in the camera reference frame, the pose translation, pose ro-
tation, and the 6 degrees of freedom pose array [Note: iGib-
son returns a 7 element array] itself. As explained in the
computation chart above, the ModelView matrix ’M’ (eq.
1) is then computed as follows:

M = V TTRT (1)

where V is the view matrix, T is the object’s pose trans-
lation, and R is the object’s pose rotation.

Figure 5: Mario figure object: (a), (b) examples of objects
(Mario action figure, Android action figure) generated on a
shelf. (c) the 3D model of the Mario action figure

We perform space carving for our experiments, using
the information from the HMS code output. To implement
space carving, we would first create a voxel prism around
the 3D object. We would then place cameras with known
camera matrices (obtained from the HMS output camera
intrinsics matrix) around the object. After that, we find the
voxels that are within the bounds of the silhouette and the
final voxels that are within the silhouette itself. Our goal
is to combine the views from multiple cameras, to obtain a
reasonably good baseline space carving of the object. The
accuracy will be limited by the fact that we can only utilize
cameras from one side of the voxel cube, so some parts of
the object will be unreachable to the camera. However, as
expanded on in the Experiments section later, there were
some difficulties with carving from multiple viewpoints
using the output from iGibson.
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Carved voxels are visualized by finding 3D surfaces from
the carved volumetric data using Lewiner et al’s approch
to Marching Cubes algorithm [8].The algorithm is an im-
proved version of Chernyaev’s Marching Cubes 33 algo-
rithm [15]. In contrast with Lorensen et al. approach [11]
to the same algorithm, Lewiner et al. algorithm is faster,
resolves ambiguities, and guarantees topologically correct
results.

4. Experiments
We ran our experiments by attempting to perform space

carving on the shelf scene with objects generated from the
HMS code, using the various camera placements we had
tried. For the most part, computing the projection matrix
to transform from 3D to 2D took most of our efforts in the
following experiments. The dataset used, as mentioned
in the Approach section, is from the set of containers and
objects provided to us from [5]. Currently we measure our
results qualitatively, by looking at the carving result visu-
ally. If we were able to successfully carve, we would have
wanted to compare against a baseline from performing the
space carving on Blender (expanded on in the Conclusion
section).

Some possible quantitative metrics we were considering
were some type of reprojection loss between the two carv-
ing results, like silhouette-based loss functions, and/or some
volumetric loss [4]. For the silhouette-based loss, the idea
is that a 2D silhouette projected from the reconstructed vol-
ume, under certain camera intrinsic and extrinsic parame-
ters, should match the ground truth 2D silhouette of the in-
put image. The loss is then (eq. 2)

Lproj(I) =
1

n

n∑
j=1

d
(
P (f(I);α(j)), S(j)

)
(2)

where I is the input image, S(j) is the j − th ground
truth 2D silhouette of the original 3D object, n is the
number of silhouettes/views used for each 3D model, P (.)
is a 3D to 2D projection function, and α(j) are the camera
parameters of the j-th silhouette, from [4]. The distance
metric d(.) could be L2 or L1 distance.

For the volumetric loss (eq. 3), the idea is to capture the
distance between the reconstructed and ground-truth vol-
umes

Lvol(I) = d(f(I), X) (3)

where I is the input image andX is ground-truth volume
of the 3D object for some distance metric (like L2) [4].

We implemented the space carving algorithm described
in the previous section using the objects generated from

Figure 6: Occluded example of depth maps and segmenta-
tion masks for different object placements.

Figure 7: Non-occluded example of depth maps and seg-
mentation masks for different object placements.

the HMS code. One constraint to note is that since space
carving is conservative, objects must not be occluded
from the camera view by the shelf, otherwise they will
be carved out in the final carving. Fig. 6 shows a typical
camera view when objects are occluded by the shelf. As
seen from the figure, the segmentation mask is missing the
occluded objects and such camera views therefore need to
be excluded for conservative space carving.

On the other hand, Fig. 7 shows camera views where all
objects are visible. Such views can be included in the final
space carving and are the type of views we generated and
selected.

We have successfully implemented carving with one
camera as shown in Fig. 8 where the top two insets repre-
sent a single view voxel carving from different angles while
the bottom two insets show the corresponding segmentation
mask and depth map. We can clearly see that carving
represents the silhouette of the placed objects, generated by
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Figure 8: Single-view voxel carving from different angles.
Bottom: corresponding segmentation mask and depth map.

the segmentation mask.

Our next step was to generalize space carving to many
different cameras that contain objects unclouded by the
shelf. However, we ran into some issues when trying to
generate carving from multiple viewpoints. Specifically,
we have had a lot of trouble trying to calculate the projec-
tion matrix to transform the points from 3D to 2D. Initially,
we had tried using the projection (perspective) matrix from
the iGibson renderer, one of the first outputs retrieved from
the HMS output, but that unfortunately did not work, as we
found out that when the camera positions shifted, the per-
spective matrix did not change. Next, we had discovered
that the view matrix V did change with each new camera
placement, so we assumed using V as the camera extrinsics
and tried to calculate the projection matrix by multiplying
the intrinsics (K) and extrinsics together (eq. 4)

P = KV (4)

but as V is a 4× 4 matrix, we removed the final column,
which seem like homogeneous coordinates, to make V into
3×4. However, we ran into the issue of the camera seeming
to stay in place while the objects moved around. We exper-
imented with numerous other methods to attempt to calcu-
late the correct projection matrix. In the next attempt, we
discovered that each object, its own Instance class in iGib-
son, has its pose information stored as a 4×4 matrix (pi for
object i), along with the object’s pose translation (T ) and
rotation (R), so we tried calculating the projection matrix
as (eq. 5)

P = Kpi (5)

Figure 9: Single-view voxel carving from different angles.
Bottom: corresponding segmentation mask and depth map.

where pi is the object pose matrix for some object i for
i ∈ [1, 5]. Similarly, we remove the last column of pi to
make it a 3×4 matrix. As this was unsuccessful as well, we
next tried using the ModelView matrix (eq. 1) to calculate
the projection matrix (eq. 6)

P = KM (6)

which unfortunately was still unable to carve properly.
Our final attempt was to use the perspective matrix (P ′)
with the ModelView matrix to calculate the projection (eq.
7)

P = P ′M (7)

but this ultimately led to erroneous results as well.

Fig. 9 shows a single view carving done from multiple
cameras. We can see that the camera seems to stay in place
while the objects are moved around while one would ex-
pect the opposite. This same issue occurred for all of our
attempts at computing the projection matrix as listed before
when trying to carve from multiple viewpoints and thwarted
our efforts to try any of the other future ideas we had origi-
nally planned (using color for segmentation, etc.). A possi-
ble solution to this confusion would be to look for a better
camera projection matrix we can get from the HMS code,
or use manually created cameras and 3D scenes as outlined
in the Conclusion section below.

5. Conclusion
From our experiments and experience tracing through

how the iGibson renderer works, we have learned that con-
verting from iGibson to the projection matrix we required
understanding some subtleties between the matrices that
iGibson produces and the projection and camera matrix we
recognize and need for space carving. One important learn-
ing was that voxel carving using a projection matrix under
the frustum camera model requires an understanding of how
different formats of projection matrices impact the carving
process. For instance, as can be seen from the partial carves,
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the camera appears to be always located in between two im-
age planes. We would have to investigate how the near-far
plane nature of the projection matrix impacts this result, and
if a successful voxel carving is at all possible in openGL’s
camera models. If iGibson-openGL render is not amenable
for carving, then we could use other objects and renderers
to do space carving on. Given that we would also need the
camera matrices from multiple views, we could accomplish
it in several ways:

a) Obtain 3D objects suitable for a shelf from either the
dataset Andrey provided (see previous section for trou-
ble with running the code) or from an open source
dataset, simulate our own camera matrices (or use the
ones in the carving homework problem), get the 2D
projections of the 3D object for each camera, input the
2D images into the frames.mat code to replace the bird
images, achieve space carving and compare it to the
original 3D object.

b) A potential future work involves the use of Blender
[13] as a renderer to set up flexible object scenes and
cameras with different camera matrices in its enabling
GUI. We installed an experimental pipeline to recre-
ate in Blender scenes generated with the HMS code
including the chosen camera positions. Fig. 10 shows
a 3D generation of the recreated scene. Further advan-
tages of Blender include simply adjusting light posi-
tions to readily generate silhouetted images, as shown
in Fig. 11, and the ability to generate bounding boxes
on the fly to generate the initial coarse voxel hull, as
shown in Fig. 12.

Figure 10: Recreated scene in Blender with objects and con-
tainer from the HMS code repository

c) calibrate our own cameras and get real life images,
similar to the ones used to carve out the bird structure

Our next goal would be to extend space carving to mul-
tiple objects, as well as objects clustered together. Space
carving, however, would not be able to distinguish between

Figure 11: A generated silhouette in Blender

Figure 12: A generated bounding box in Blender

objects that are placed too close to each other. One so-
lution is to use voxel coloring, provided the objects are
lambertian and of different color. Another possibility is to
use shadow carving by placing light sources around the ob-
ject and calculating the shadows. Such an approach would
not only help with tightly clustered objects, but also with
objects that have multiple concavities, as traditional space
carving would fail to identify them. Once we have a re-
liable algorithm to carve the shapes of different objects in
different orientations, we would feed the data into a 3D de-
tection algorithm that we would either find an open source
implementation of or code ourselves. One way to do this
is to convert our carved voxels into a point cloud by us-
ing very small voxels and using the coordinate of each as
a point since 3D detection algorithms typically use point
clouds [16], [7]. While a logical step would be to use a
3D convolutional network algorithm, such methods are typ-
ically slow and require high computational power without
prior pre-processing [3], [9]. More recent works organize
voxels in sets of columns and encode each column into a
feature encoding to form a pseudo-image which can then be
used in traditional detection algorithms. A state-of-the art
end-to-end approach called Voxelnet [19] directly operates
on point clouds and produces 3D bounding boxes for the
detected structure. The summary of the algorithm is dia-
grammed in Fig. 13.
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Figure 13: VoxelNet architecture. The feature learning net-
work takes a raw point cloud as input, partitions the space
into voxels, and transforms points within each voxel to a
vector representation characterizing the shape information.
The space is represented as a sparse 4D tensor. The convo-
lutional middle layers processes the 4D tensor to aggregate
spatial context. Finally, a RPN generates the 3D detection.

Inputting voxels already pre-processed by space carving
could potentially speed up the algorithm. Our final steps
would be to compare the detection speed, accuracy and
localization with our space carving model and without it.
We could use one of the open source algorithms mentioned
above to benchmark the performance with and without the
additional space carving step.
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6. Supplementary Materials
Our modified HMS code, originally from [5]:
https://github.com/jhyau/HMS
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